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Summary. The imminant polynomials of the adjacency matrices of graphs are 
defined. The imminant polynomials of several graphs [linear graphs (L.), cyclic 
graphs (C.) and complete graphs (K.)] are obtained. It is shown that the 
characteristic polynomials and permanent polynomials become special cases of 
imminant polynomials. The connection between the Schur-functions and immi- 
nant polynomials is outlined. 
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1 Introduction 

Quest for graph-theoretical (structural) invariants has a long history in mathe- 
matical and chemical literature [1-25]. For example, computer representation of 
a molecular structure using the underlying connection table is not unique since 
it is label independent. It was observed by several workers (see for example, Ref. 
[24]) that the determinant of the connection table (adjacency matrix of the 
associated graph) and the characteristic polynomial of the graph are invariant to 
labeling. Consequently, it was thought for some time that the characteristic 
polynomials of graphs are unique structural invariants. However, this early 
conjecture is now well-known to be false since one could produce two non- 
isomorphic graphs with the same characteristic polynomials [24]. 

The characteristic polynomials of graphs [de t (xI -  A) where A is the adja- 
cency matrix] have numerous other chemical applications [1-21] although 
perhaps they were explored in depth for the first time in the chemical context of 
Hfickel theory. While characteristic polynomials have received considerable 
attention in the chemical literature [1-21], this is not the case with other 
structural invariants. For example, the related permanent polynomial 
Pe r (x / -  A) has received some attention in the mathematical literature [22-24]. 
In fact, it has been shown that the permanental polynomials discriminate some 
isospectral graphs when characteristic polynomials fail to differentiate those [23]. 
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Nevertheless, there are trees for which the permanental polynomials are the same 
and thus in general, the permanental polynomials are not unique structural 
invariants. 

The imminant polynomials proposed here combine the character theory of 
symmetric group Sn with graph theory. It is likely that these polynomials thus 
would have powerful and more significant applications than the ordinary charac- 
teristic polynomials which certainly are known to have numerous applications in 
several areas ranging from quantum chemistry to chemical kinetics. If the 
imminant polynomials can be generated through alternative routes then they 
would serve as the generators of the characters of the Sn group which are very 
important in chemistry and physics. 

In this manuscript, we put forth more general structural invariants which we 
call the imminant polynomials of graphs. Both the characteristic and permanent 
polynomials discussed in the literature up to now become special cases of the 
imminant polynomials. The imminant polynomials use the characters of the 
symmetric groups S~ (the group of n! permutations of n objects). The relation- 
ship between the imminant polynomials and the Schur-functions (S-functions) is 
also discussed. The imminant polynomials of linear graphs (L,), cyclic graph 
(C,) and complete graphs (K,) are tabulated. 

2 Imminant polynomials of graphs 

Let A be the adjacency matrix of a graph containing n vertices defined as follows: 

{10 i f i¢jandthevert icesiandjareconnected 
A i j  = otherwise, 1 ~< i ~< n, 1 ~<j ~ n 

Consider the matrix A' defined by ( - x I  + A). Note that equivalently, one may 
consider the matrix A -  xL Suppose aij's are the matrix elements of the 
( - x I  + A) matrix. Let s be a permutation in the group S~ (recall n is the number 
of vertices) described in the permutation notation as: 

s = [ 1  2 3 . . .  n 1 
6' 1 e 2 e 3  • . . e n 

(That is, 1 goes to e~, 2 goes to e2 . . .  n goes to en. ) Consider the product Ps 
defined by: 

P s  = O l e l  a2e2  " " " anen 

It may be seen that if s is the identity permutation e then: 

Pe = a l i a 2 2  " " " ann 

This would simply be the product of the diagonal elements of the matrix 
( - x I  + A). The irreducible representations of the group Sn are well known to be 
characterized by the partitions of the integer n [25-30], which we will denote by 
[2]. For example, the irreducible representations of the group $5 are given by 
[5], [41], [32], [312], [212], [213], [15]. Thus in general 2 is a partition of n defined 
by (2j, 22 . . . . .  ,~) such that 21 >~ 22 >~- • • ~> 2,/> 1. 

The imminant polynomial of the graph G, associated with the irreducible 
representation [2] of the group Sn is given by: 

S 
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where the sum is over all possible n! permutations (s) of n objects. Of course, 
there are n! such terms and thus the computation of imminants in general is a n! 
problem. However, as we will show special tricks reduce the number of compu- 
tations by several orders thereby making computations of imminants a feasible 
problem for some special cases. 

Let [n] be the identity irreducible representation of the symmetric group Sn. 
In this case Z~(s) is 1 for all s and thus: 

s 

This is precisely the permanent polynomial of a graph studied by Turner [23] in 
1968 and revisited by Merris et al. [22] in 1981. Yet there are very few studies on 
the permanent polynomials of graphs compared to the characteristic polynomi- 
als. 

Suppose 2 = (1, 1 , . . .  1, 1) then the imminant polynomials become: 

p[l"] . = Z  
s 

where ( - 1) s is - 1 if the permutation s is odd and + 1 if it is even. It is easy to 
determine if s is even or odd from its cycle representation. Suppose s contains Vl 
cycles of length 1, v2 cycles of length 2 . . . .  v, cycles of length n then it can be 
seen that: 

p ,oj + , c p  s 
G 

s 

= Z ( - -  1 ) ' 2 + " + ' 6 + " + V c s ( a l l a 2 2  "" " a , , )  
s 

where e = n if n is even and (n - 1) if n is odd. The above expansion is nothing 
but the determinant of the matrix and thus -aPtl"l is the characteristic polynomial 
of the graph. 

Except for the special cases namely, [n] and [1"], the imminant polynomials 
of G are new and there appears to be no simple computational procedure to 
generate P~J. 

For both [n] and [ 1"] the imminant polynomials can be generated using the 
Sachs theorem. The Sachs theorem requires finding all cyclic subgraphs (circuits) 
and isolated edges in a given graph. Suppose k ( H )  is the number of such 
subgraphs. Then Merris et al. [22] show that the absolute values of the 
coefficients in the ,permanent polynomial c¢ are generated by: 

c i = ~,, 2 k(~/) 1 ~< i ~< n 
H 

where the sum is over all subgraphs H on i vertices whose components are 
circuits and isolated edges. In this case, the permanent polynomial is given by: 

P ~  = x ~ - c l x " -  1 + c 2 x , , - 2  + . . .  + ( _ 1)"c, 

A similar procedure exists for -aPtl"l (see for example Ref. [16]). 
The current author [3, 4] formulated an efficient technique suitable for 

computer implementation for the characteristic polynomials of graphs. The 
method which he called the Frame method was shown by Trinajsti6 and 
coworkers [12] due to La Verrier. The current author [3, 4] has shown that using 
this method characteristic polynomials of graphs containing a large number of 
vertices can be easily and routinely obtained. 
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In general, at present there appears to be no general and efficient computa- 
tional a!gorithm for the computation of other imminant polynomials. We present 
here some techniques which simplify the n! nature of the problem. First we 
consider the generation of Z (z) itself using the Schur-function method• In order to 
make this discussion self-contained we summarized below the salient points of  
the theory of S-functions from Refs. [25-29]. 

Suppose s~ is a symmetric function of the quantities ~1, ~2, • • •, ~,, defined 
by: 

Let Zr  be the matrix defined by: 

S1 

$2 

[ Z r ]  = s3 

S r - -  1 

$2 

Sr = ~ er.  
i = l  

1 0 0 . . .  0 

s 1 2 0 . . .  0 

s 2 s 1 3 0 . . .  0 

Sr - 2 • "" S1 

Sr - 1 "'" $2 

r - 1  

$1 

Suppose (2) is a partition (2) ~ ( 2 1 , 2 2 , . , . ,  2p) of r with p components (in 
descending order). The Schur function also known as the S-function {,~) is 
defined by the following expression: 

{2) 

where IZr I (~ is the imminant of the matrix Zr associated with the partition (2). 
Let hr and a~ denote the S-functions which correspond to the partitions (r) and 
(V), respectively. The above expression for the S-function {2} can be reduced to 
another convenient form. Let ] C I be the order of conjugacy class C of the group 
S, and let X~ ~ be the character of [2] which corresponds to the class C. Then it 
can be shown that: 

where Sc is defined by: 

S C  ~ ol~blob2ob3o2 "~3 " • " 

if an element in the conjugacy class C has bl cycles of length 1, b2 cycles of length 
2, etc. I cI can be obtained by Cayley's counting principle as: 

r! 
I C [  = l b l b 1 ! 2 6 2 b 2 !  .. • 

S-functions can be illustrated with examples from the group $4. The group 
$4 has five irreducible representations associated with partitions (4), (3, 1), (2, 2), 
(2, 12) and (14). From the character table of 5:4 we find that: 

{4) 1 4  = ~-~(S 1 .ql- 6 S 2 S 2  + 8SIS 3 + 6S 4 + 3s22) 

{31} = 1(3s4 + 6s~s2 -- 6s4 - 3s~) 
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{2 2 } 1 2 = ~(2s l  - 8sis3 + 6s 2) 

{212 } 1 4 = ~(3s l  - 6s~s2 + 6S 4 - -  3s~) 

{14 } 1 4 = ~ ( S  1 - -  6S2S2 q- 8S1S 3 - -  6s4 + 3s~) 

S-functions can be obtained as quotient of  determinants using the Frobenius 
formula. Let: 

A(°~1 ,  °~2 . . . .  , °~m) = H ( Ogr - -  °~s)(r  " ( s )  = 2 - - ~  o~T - 1  0~7 - 2 . . . O~m_ 1 

The Frobenius formula which relates sc, A(ul . . . . .  ~ )  and the character is 
shown below. 

Sc A(~I, (X2, • • • , t~m) = ~ -[- ,~(C2)0~ ' '  + n - -  10~222+n - - 2 . . .  0~n2n 

From this the S-function can be obtained as: 

+ . - ,  

L ' + -  H i  ~ n - 1  

if the conjugacy class C contains b 1 cycles of  length l, be cycles of  length 2 . . . .  , 
etc. The summation is taken with respect to all permutations, the negative sign 
is for odd permutations• 

Generating functions can also be obtained for S-functions. Let 
F(x) = 1 + ~ hrx" where hr is the S-function which corresponds to the partition 
(r). Consider the S-function of the form {n;pl,P2 . . . .  ,p;} with n ~>Pl ~> 
P2 > " " " ~> P;. Let g(x) be defined as: 

x i 

h p l - 1  

g(x)= hp2_  

hpj_i 

xi-a • • • 1 

hpl • • .  hp i+ i_ l  

hp2_l • . .  hp2+i_2 

hpi "-i+1 "'" ]Ipi 

F(x)g(x) is a generating function for S-functions of the form {n; Pl, P 2 , . . . ,  Pi}. 
The coefficient of  x "+; in F(x)g(x) gives {n;p l ,p2 , . . .  ,Pi}. This method of  
computing the S-functions amounts to finding the cycle indices of  smaller 
groups. Let P~i be the cycle index of  the symmetric group Si. The S-function 
{n ;  P l ,  P2  . . . .  , Pn } is the determinant, det(Psp i -, +) ,  with the convention Pso = 1 
and Ps_t=O for a positive integer E [31]. Let us illustrate this with the- 
S-function {6; 4, 1, 1}. This is shown below as a determinant: 

Ps4 Ps5 Ps6 { 

{ 6 ; 4 , 1 , 1 } =  Pso Psi Ps2 
0 Pso Psi 

= P2slPs4 -- Ps2Ps4 - Ps1Ps5 + Ps6 
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with, 

P S 1  ~ S 1 

= ~(s, + s2) Ps2 1 2 

Ps4 = l (  s4 + 6s~s2 + 8SlS3 + 3s~ + 6s4) 

es5 1 5 10s3s2 nt_ 20s12s3 + 15s1s2 _~_ 30s1s4 

+ 20s2s3 + 24ss) 

= 7 ~ ( S  1 "-~ -~- + ps  6 1 6 15ses2 40s~s3 45s~s2-t-90s~s4 

-t- 120sls2s 3 + 144slss + 15s 3 + 90s2s4 + 40s 2 -t- 120s6) 

Substituting these expressions in the determinant expansion we find that: 

{6; 4, 1, 1} ' 6 40s3s3 _ 90sZs~ = ~-6(10s1 + 30s482 + 

- 120sls2s3 - 30s 3 + 40s 2 + 120s6) 

Using the techniques S-functions characters of groups of large orders can be 
obtained. Liu and the author [30] have devised a computer code which generates 
the character tables of the symmetric groups Sn for n up to 20. For larger n it is 
still possible to generate selected characters since generation of all characters 
becomes overwhelming. In our method, computation of the imminant polynomi- 
als requires as the first step computation of the S-functions associated with [2]. 
It seems to the author that there may be a direct way of using the Frobenius 
determinant method to compute imminant polynomials using the permanent 
polynomials of smaller graphs. However, this is speculative at present. Further 
work is warranted in this direction. 

The second step is to identify surviving products for each permutation s in a 
given conjugacy class. It is clear that the power of x in the imminant polynomial 
is determined by the number 1-cycles in the permutation s. If there are vl 1-cycles 
in the permutation s then the power of x is simply Vl. We group together 
conjugacy classes which have the same number of 1-cycles. Then identify the 
surviving products under that permutation. For each such group of permutations 
we compute the surviving terms multiplied by the character and sum over all the 
conjugacy classes. It is important to emphasize that all permutations in a 
conjugacy class will not lead to non-zero contributions, in general, for any graph. 
Only for a complete graph K, do permutations in a given conjugacy class yield 
the same contribution. 

We now illustrate the procedure with a few examples. Consider first the line 
graph L4 in Fig. 1. The conjugacy class 14 yields the x 4 term for all imminant 
polynomials. The x 2 term for all graphs containing 4 vertices is generated by 6 
permutations in the conjugacy class 122. However it is readily seen that only 
three of these permutations (namely, (12)(3)(4), (23)(1)(4), (1)(2)(34)) lead to 
non-zero terms for L 4 . Hence the coefficient of x 2 in the imminant is three times 
the character corresponding to 122. It is easily seen that 8 permutations of the 
type 13 lead to zero terms and thus the coefficients of x terms are zero in all 
imminants. The constant terms are generated by two conjugacy classes of the 

2 ,v ~ o Fig. 1. A linear graph on 4 vertices (L4) 
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l l Fig. 2. Acycl icgraphon4ver t ices(C4)  

385 

type 4 and 22. Of these only one term in 22 survives [(12)(34)] for the L4 graph. 
Thus the five imminant polynomials of the L4 graph are: 

p [ 4 ]  _ X 4 - + 3x 2 + 1 

p[3U 3x 4 +  3x 2 1 

pr22~ _ 2x 4 _}_ 2 
G - -  

P[a 2121 = 3x 4 - 3x; --  1 

P 141 = X 4 3x 2 + 1 
G 

As another example consider the C4 graph in Fig. 2. Consider the [31] 
irreducible representation. For  this graph four of the six 122 type permutations 
survive, none of  13 type permutations survive, 2 of six permutations of the type 
4 survive (namely (1234), (1432)), and 2 of  3 permutations of  the 22 type survive 
[(12)(34), (14)(23)]. Hence the [3, 1] imminant polynomial is: 

p [ 3 , 1 ]  ___ 3x4 -k- 4x 2 - 4 
G 

Graphs of various complexities can be treated this way. Consider the graph 
in Fig. 3. Note that this graph is related to C4 by addition of  another diagonal. 
All imminant polynomials of this graph are as follows: 

P~J = x 4 + 5x 2 - 4x + 4 

pE3,u 3x 4 + 5 x  2 4 

P 221 2x 4 + 4x + 4 
G = 

pf2121 3x 4_  5x 2 
G 

p[16] = x 4 _  5x 2 __ 4x  
G 

Fig. 3. A graph on 4 vertices 

3 Imminant polynomials of certain classes of graphs 

In this section we compute the imminant polynomials of a series of  graphs. We 
first consider the linear graphs Ln. Table 1 lists all the computed imminant 
polynomials of L, graphs for n = 4 - 6. For  all linear graphs it can be seen from 
Table 1 that the magnitudes of the coefficients of  the permanent polynomial and 
the characteristic polynomial are the same. As a matter of fact, Merris et al. [22] 
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Table 1. Imminan t  polynomials of  line graphs L n 
(n = 4 - 6 )  

r~ 
/" X 4 X 2 1 

[41 1 3 
[31] 3 3 --1 
[22 ] 2 0 2 
[212] 3 - 3  - 1 
[14 ] 1 --3 1 

L5 
lP x 5 x 3 x 

[5] 1 4 3 
[411 4 8 0 
[32] 5 4 3 
[312 ] 6 0 - 6  
[221] 5 - 4  3 
[213 ] 4 - 8  0 
[15 ] 1 - 4  3 

Z 6 
F x 6 x 4 x 2 1 

[6] 1 5 6 1 
[51] 5 15 6 - 1  
[42] 9 15 6 3 
[412] I0 10 - 12 - 2  
[3 2 ] 5 5 6 --3 

[321] 16 0 0 0 
"[ 2 3] 5 -- 5 6 3 
[313 ] 10 --10 --12 2 
[2212] 9 -- 15 6 --3 
[214] 5 -- 15 6 1 
[16 ] 1 --5 6 --1 

have  p r o v e n  that :  suppose  
m a t r i x  a n d  let: 

de t [x I  - A(T) ]  = 

p e r [ x / -  A(T) ]  = 

t h e n  

T is a n y  tree g r ap h  a n d  if  A ( T )  is the  ad jacency  

x . _ a l x  n - I  + a 2 x n - 2  + . . .  + ( -  1)"an 

X n -- ClXn - 1 ..~ c 2 x n - 2  .~_ . . .  "Jr- ( - -  1 ) n C n  

c i = l a , [  V l < ~ i < ~ n  

This  resul t  c an  be p r o v e n  us ing  the  Sachs t h e o r e m  since for  all  tree g raphs  
ci = ai = 0 for odd  i a n d  for even i the  n u m b e r  o f  single edges is i /2.  

The  charac ter i s t ic  p o l y n o m i a l  ( i m m i n a n t  p o l y n o m i a l  which  c o r r e s p o n d s  to  
[ln]) o f  the  l ine g r ap h  L .  is g iven by  the Ch e b y shev  p o l y n o m i a l  [11]: 

T ~ ( x ) =  ( _ 1 )  k n 
k = 0  
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Hence we conclude that the coefficients all permanental polynomials of Ln graphs 
are generated by the Chebychev polynomials. 

As seen from Table 1 for the Ln graphs, the magnitudes of the coefficients of 
the imminant polynomial [2] are the same as its conjugate [2] ~. For example, the 
irreducible representations [31] and [212] are conjugates for $4. Likewise the 
representations [41], and [213] are conjugates, [32] and [221], etc., are conjugates. 
The magnitudes of the coefficients of their imminant polynomials are the same 
(Table 1). 

Table 2 shows all imminant polynomials of the cyclic graphs Cn (for 
example, see Fig. 2 for C4). In general, there is no simple relation between the 
imminant polynomial ~GP[~1 and the imminant polynomial of its conjugate p~lt. 
For example, the characteristic polynomial of the C4 graph is given by: 

p [  4] = x 4 _ 4X 2 
G 

Table 2. Imminant polynomials of cyclic graphs C n 
(n = 4 -- 6) 

c, 
F x 4 x 2 1 

[4] 1 4 4 
[311 3 4 - -4  
[22 ] 2 0 4 
[212 ] 3 - -4  0 
[I 4 ] 1 - 4  0 

C5 
F x 5 x 3 x 1 

[5] 1 5 5 - -2  
[41] 4 10 0 2 
[32] 5 5 0 0 
[312 ] 6 0 0 - 2  
[221] 5 - 5  0 0 
[213 ] 4 - 1 0  0 2 
[15 ] 1 - 5  5 - 2  

C6 
F x 6 x 4 x 2 1 

[6] 1 6 9 4 
[51] 5 18 9 - 4  
[42] 9 18 9 6 
[412] 10 12 - 1 8  - 2  
[32 ] 5 6 9 - 6  
[321] 16 0 0 0 
[23 ] 5 - 6  9 6 
[313 ] 10 - 1 2  - 1 8  2 
[2212 ] 9 - -18  9 - -6  
[214] 5 -- 18 9 4 
[16 ] 1 - -6  9 - -4  
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Likewise the imminant polynomials of [31] and [212] conjugate representations 
are: 

p[311 3x 4 + 4 x  a 4 

p[212] 3x 4 _ 4x 2 
G 

For the C5 graph, however, the coefficients of the imminant polynomials of 
conjugate partitions differ only in signs. 

The imminant polynomial corresponding to the [ 1"] representation of the Cn 
graph can be obtained in terms of the linear graphs using the well-known 
recursive relation [ 11]: 

ptl-I _ ptl-I _ p [ 1 . - 2 ]  ÷ ( _ 1)"2 
C n  - -  L n  L n  - 2 

We found similar relations to hold for other imminant polynomials as well. For 
example the following relationship is true: 

pts,11 _ pt5,11 + p~j l  _ 2 
C6 - -  L 6  

For other imminant polynomials, relationships between Cn and L, graphs appear 
to be more complicated. 

Next we consider the complete graphs on n vertices denoted by K,. An 
example of this graph namely, the K4 graph is shown in Fig. 4. Table 3 shows the 
imminant polynomials of the K, graphs for n = 4-7.  The computation of the 
imminant polynomials of Kn is challenging in the sense that none of the n! terms 
cancel out since the graph is complete. On the other hand, the S-functions can 
be used to full advantage since every member in a conjugacy class makes the 
same contribution although different conjugacy classes of Sn can also yield the 
same power of x. First we note that there is no simple relationship between the 
coefficients of p~l and pral*G for the Kn graph. In particular, the permanental 
polynomial P~] and p [ l n ]  ~G are not simply related for the complete graph Kn. 

It is known in the literature that the characteristic polynomial of the 
complete graph Kn [11, 24] is given by: 

P tln] = (x - n + 1)( 1 + x) n - 1 K, 

It can be seen from Table 3 that all our results for the [1 n] representation 
conform to this although we did not use this fact in computing the results in 
Table 3. 

The imminant polynomials of the K, graphs of each imminant differ and are 
sufficiently complex. This gives us hope that it is conceivable that other imminant 
polynomials may differ for two non-isomorphic graphs whose characteristic 
polynomials are the same (isospectral or cospectral graphs). For example, 
Harary et al. [24] have shown that permanental polynomials discriminate at least 
5 graphs which have the same characteristic polynomials. However, since for 
trees, the coefficients of the permanental and characteristic polynomials differ in 
only signs, it is evident that permanental polynomials of isospectral trees will be 
the same. 

Fig. 4. A complete graph on 4 vertices (/£4) 
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Table 3. Imminant polynomials of  K. (n = 4-7)  

/C4 
/~ X 4 X 2 X i 

[41 I 6 --8 9 
[31] 3 6 0 - 9  
[22 ] 2 0 8 6 
[212 ] 3 --6 0 3 
[14 ] I --6 --8 --3 

/ "  X 5 X 3 X 2 X 1 

[5] 1 lO - 2 0  45 - 4 4  
[41] 4 20 - 2 0  0 44 
[3~ 5 10 20 --15 - 2 0  
[312 ] 6 0 0 - 3 0  --24 
[221] 5 - i0 20 45 20 
[213 ] 4 - 2 0  - 2 0  0 4 
[15] 1 - 1 0  - 2 0  - 1 5  4 

K, 
F X 6 X 4 X 3 X 2 X 1 

[~  1 15 - 4 0  135 - 2 6 4  265 
[51] 5 45 - 8 0  135 0 - 2 6 5  
[42] 9 45 0 - 4 5  144 135 
[412 ] 10 30 - 4 0  - 9 0  120 130 
[37 5 15 40 45 - 1 2 0  - 5 5  
[321] 16 0 80 0 - 1 4 4  - 8 0  
[23] 5 - 15 40 135 120 35 
[313] 10 --30 - 4 0  - 9 0  - 120 --50 
[2212 ] 9 - 4 5  0 135 144 45 
[21q 5 - 4 5  - 8 0  - 4 5  0 5 
[16] 1 - 15 - 4 0  - 4 5  - 2 4  - 5  

K7 
]" X 7 X 5 X 4 X 3 X 2 X 1 

[7] 1 21 - 7 0  315 --924 1855 -- 1854 
[61] 6 84 - 2 1 0  630 - 9 2 4  0 1854 
[52] 14 126 - 140 210 - 5 0 4  - 9 1 0  - 9 2 4  
[512 ] 15 105 - 2 1 0  105 420 --945 --930 
[43] 14 84 70 - 2 1 0  84 560 294 
[421] 35 105 70 --305 420 1295 630 
[321] 21 21 210 -- 105 - 9 2 4  - 9 4 5  --294 
[413] 20 0 - 1 4 0  - 4 2 0  0 560 300 
[327 21 --21 - 2 1 0  - 3 0 5  84 - 3 1 5  -- 126 
[3212] 35 --105 70 105 - 4 2 0  - 5 9 5  --210 
[231] 14 - 8 4  70 630 924 560 126 
[314] 15 - 1 0 5  --210 - 3 1 5  - 4 2 0  - 3 1 5  --90 
[2213] 14 - 126 - 140 210 504 350 84 
[215 ] 6 - 8 4  - 2 1 0  - 2 1 0  - 8 4  0 6 
[17] 1 - 2 1  --70 - 1 0 5  - 8 4  --35 --6 
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It would be interesting to explore if i m m i n a n t  polynomials  will differentiate 
two isospectral non-t ree  graphs. At  least in the chemistry literature, non- t ree  
graphs are more c o m m o n  except in representing saturated alkanes for which, of  
course, trees are impor tant .  These are open questions which will be the topic of 
future investigations. Efficient and  general algori thms are also desirable for the 
computa t ion  of i m m i n a n t  polynomials .  
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